본문 바로가기
Algorithm 💫/Problem Solving

[프로그래머스 / python3 / level2] 배달

by 돼지고기맛있다 2021. 8. 31.
반응형

✏️ 문제 링크

https://programmers.co.kr/learn/courses/30/lessons/12978

 

코딩테스트 연습 - 배달

5 [[1,2,1],[2,3,3],[5,2,2],[1,4,2],[5,3,1],[5,4,2]] 3 4 6 [[1,2,1],[1,3,2],[2,3,2],[3,4,3],[3,5,2],[3,5,3],[5,6,1]] 4 4

programmers.co.kr

 

 

✏️ 문제 설명

더보기

N개의 마을로 이루어진 나라가 있습니다. 이 나라의 각 마을에는 1부터 N까지의 번호가 각각 하나씩 부여되어 있습니다. 각 마을은 양방향으로 통행할 수 있는 도로로 연결되어 있는데, 서로 다른 마을 간에 이동할 때는 이 도로를 지나야 합니다. 도로를 지날 때 걸리는 시간은 도로별로 다릅니다. 현재 1번 마을에 있는 음식점에서 각 마을로 음식 배달을 하려고 합니다. 각 마을로부터 음식 주문을 받으려고 하는데, N개의 마을 중에서 K 시간 이하로 배달이 가능한 마을에서만 주문을 받으려고 합니다. 다음은 N = 5, K = 3인 경우의 예시입니다.

위 그림에서 1번 마을에 있는 음식점은 [1, 2, 4, 5] 번 마을까지는 3 이하의 시간에 배달할 수 있습니다. 그러나 3번 마을까지는 3시간 이내로 배달할 수 있는 경로가 없으므로 3번 마을에서는 주문을 받지 않습니다. 따라서 1번 마을에 있는 음식점이 배달 주문을 받을 수 있는 마을은 4개가 됩니다.
마을의 개수 N, 각 마을을 연결하는 도로의 정보 road, 음식 배달이 가능한 시간 K가 매개변수로 주어질 때, 음식 주문을 받을 수 있는 마을의 개수를 return 하도록 solution 함수를 완성해주세요.

제한사항

  • 마을의 개수 N은 1 이상 50 이하의 자연수입니다.
  • road의 길이(도로 정보의 개수)는 1 이상 2,000 이하입니다.
  • road의 각 원소는 마을을 연결하고 있는 각 도로의 정보를 나타냅니다.
  • road는 길이가 3인 배열이며, 순서대로 (a, b, c)를 나타냅니다.
    • a, b(1 ≤ a, b ≤ N, a != b)는 도로가 연결하는 두 마을의 번호이며, c(1 ≤ c ≤ 10,000, c는 자연수)는 도로를 지나는데 걸리는 시간입니다.
    • 두 마을 a, b를 연결하는 도로는 여러 개가 있을 수 있습니다.
    • 한 도로의 정보가 여러 번 중복해서 주어지지 않습니다.
  • K는 음식 배달이 가능한 시간을 나타내며, 1 이상 500,000 이하입니다.
  • 임의의 두 마을간에 항상 이동 가능한 경로가 존재합니다.
  • 1번 마을에 있는 음식점이 K 이하의 시간에 배달이 가능한 마을의 개수를 return 하면 됩니다.

입출력 예

N / road / K / result
5 [[1,2,1],[2,3,3],[5,2,2],[1,4,2],[5,3,1],[5,4,2]] 3 4
6 [[1,2,1],[1,3,2],[2,3,2],[3,4,3],[3,5,2],[3,5,3],[5,6,1]] 4 4

입출력 예 설명

입출력 예 #1
문제의 예시와 같습니다.

입출력 예 #2
주어진 마을과 도로의 모양은 아래 그림과 같습니다.


1번 마을에서 배달에 4시간 이하가 걸리는 마을은 [1, 2, 3, 5] 4개이므로 4를 return 합니다.

 

✏️ 문제 풀이

1. 각 정점으로의 최단 경로 알고리즘을 사용한다. (플로이드)

2. 플로이드 알고리즘으로 1에서 각 정점으로 갈 수 있는 최단 경로들 중 K 이하로 갈 수 있는 값을 filter하여 리스트를 생성한다. 

3. 리스트의 길이가 답!

 

 

 

 

✏️ 문제 코드

import sys

def floyd(n, data):
    dist =[[sys.maxsize] * n for _ in range(n)]
    
    for i, j, edge in data:
        dist[i-1][j-1] = min(dist[i-1][j-1], edge)
        dist[j-1][i-1] = min(dist[j-1][i-1], edge)
    
    for k in range(n):
        dist[k][k] = 0
        for i in range(n):
            for j in range(n):
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
                
    return dist


def solution(N, road, K):
    answer = 0
    result = floyd(N, road)[0]
    
    answer = len([(i) for i in range(len(result)) if result[i] <= K])
    
    return answer
반응형

댓글